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Summary

Knots and braids, beside being fascinating mathematical objects, are encoded
in the foundations of a number of physical theories and models, either as con-
crete realizations of natural systems or as important conceptual tools (cf. for
instance the atomic model based on knot theory proposed in the nineteenth
century). Mathematically, knots and braids are closely interconnected: from
a braid –a ‘weaving’ pattern of strings– we can get a multi–component knot
(a ‘link’) simply by tying up its free endpoints, while from a knot drawn in
a plane we can select portions which look like ‘over’ and ‘under’–crossing
collections of strands.
It was in the late 1980 that knot theory was recognized by Witten to have a
deep, unexpected interaction with quantum field theory. In earlier periods of
the history of science, geometry and physics interacted very strongly at the
‘classical’ level (as in Einstein’s General Relativity theory), but the main fea-
ture of such a ‘quantum’ connection is that geometric features that do matter
are global (‘topological’), any other local metric details being irrelevant. To
focus on this crucial point consider a knot embedded in the 3D Euclidean
space: what really matters is its ‘knottiness’, while the length of the string
and the bending or stretching of the various portions of the string itself can
be changed at will (without cutting and gluing back the endpoints).
Over the years mathematicians have proposed a number of ‘knot invariants’
aimed to distinguish and classify systematically all possible knots. The most
significant and effective invariants are polynomial expressions (in one or two
variables) with coefficients in the relative integers. Since it is always pos-
sible to ‘present’ a knot as the closure of a braid, the Artin braid group
on n generators (for an n–strands braid) is called into play: topological
information about ‘over’ and ‘under’ crossings are translated into an alge-
braic setting (elementary braidings ↔ generators), opening the possibility
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of computing polynomial invariants of knots from ‘representations’ of these
finitely–presented groups into suitable algebras.
It was Vaughan Jones in 1985 who discovered the most famous polynomial
invariant, the Jones’ polynomial [1], and Ed Witten [2] who recognized this
knot invariant as naturally associated with the vacuum expectation value
(v.e.v.) of a ‘Wilson loop’ operator defined in unitary ‘topological’ quan-
tum field theories (TQFTs) of the Schwarz–type (specifically, a non–Abelian
Chern–Simons theory with gauge group SU(2) in the fundamental represen-
tation) in D = 3 spacetime dimensions. Thus, the Jones polynomial and
its ‘colored’ extensions can be evaluated not only as ‘traces’ of (abstractly
chosen) matrix representations of the braid group, but fully understood at a
quantum field–theoretic level in the frame of Schwarz TQFTs.
*The bibliography on the subject is huge, and I do not even try to provide a

complete list. A few seminal original papers, as well as the bibliographic sources

of these notes, are quoted as references in the text. A brief survey on quantum

invariants and more specific references are provided in the final section.

**Remarks on focused issues and applications are included and more details will

be provided on request as supplementary material.

1 Topological & algebraic knot theory:

basic definitions, ambient and regular

isotopy, topological invariants of knots;

the braid group

The basic references for this lecture are Joan Birman’s [3, 4].
A knot K is defined as a continuous embedding of the circle S1 (the 1–

dimensional sphere) into the Euclidean 3–space R3 or, equivalently, into the
3–sphere S3 .

= R3 ∪ {∞}. A link L is the embedding of the disjoint union
of M circles, ∪Mm=1 (S1)m into R3 or S3, namely a finite collection of knots
referred to as the components of L and denoted by {Lm}m=1,2,...,M . Since
each circle can be naturally endowed with an orientation, we can consider
also oriented knots (links).

Referring for simplicity to the unoriented case, two knots K1 and K2 are
said to be equivalent, K1 ∼ K2, if and only if they are ambient isotopic. An
isotopy can be thought of as a continuous deformation of the shape of, say,
K2 ⊂ R3 which makes K2 identical to K1 without cutting and gluing back
the closed string K2.
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The planar diagram, or simply the diagram, of a knot K is the projection
of K on a plane R2 ⊂ R3, in such a way that no point belongs to the
projection of three segments, namely the singular points in the diagram are
only transverse double points. Such a projection, together with ‘over’ and
‘under’ information at the crossing points –depicted in figures by breaks in
the under–passing segments– is denoted by D(K); a link diagram D(L) is
defined similarly.

In what follows we shall often identify the symbols K [L] with D(K)
[D(L)], although we can obviously associate with a same knot (link) an in-
finity of planar diagrams. Below: diagrams of the trefoil knot and Borromean
rings (a 3-component link).

The number of crossings of a knot (diagram) is clearly a good indicator
of the complexity of the knot. Indeed, Tait in late 1800 initiated a program
aimed to classifying systematically knots in terms of the number of crossings
(see [5] and Knot Tables on the web).

Since a knot with crossing number κ ≡ c(K) can be presented by planar
diagrams with crossing numbers c(D(K)) with c(D(K)) > κ as well, the first
issue to be addressed is the search for procedures aimed to simplify as much
as possible the diagrams of a knot K to get a D′(K) with c(D′(K)) = κ,
the minimum crossing number. Reidemeister’s theorem helps in answering
to this basic question.
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Equivalence of knots (Reidemeister moves). Given any pair
of planar diagrams D,D′ of the same knot or link, there exists a
finite sequence of diagrams

D = D1 → D2 → · · · → Dk = D′ (1)

such that any Di+1 in the sequence is obtained from Di by means
of the three Reidemeister moves (I, II, III) depicted below.

I II

III

The procedure determined by Reidemeister’s theorem applies to subsets
of link diagrams localized inside disks belonging to the plane where the di-
agram lives, and can be suitably generalized to handle diagrams of oriented
links. However, notwithstanding the recursively numerable character of the
implementation of the Reidmeister moves with respect to the intractability
of the notion of ambient isotopy, such moves cannot be formalized into effec-
tive algorithms, basically because the above definition is purely topological.
As we shall see, transformations on link diagrams can be consistently trans-
lated into an algebraic setting by exploiting their deep connection with braid
groups. In the new setting the moves to be applied to link diagrams will be
reformulated in terms of algebraic operations, see Markov’s theorem below.
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A link invariant is defined through a map

L −→ f(L), (2)

where the quantity f(L) depends only on the type of the link, namely takes
different values on inequivalent links. Switching to link diagrams, we keep
on using the same notation as in (2), but now it is sufficient to verify that
f(L) (≡ f(D(L))) does not change under applications of the Reidemeister
moves I, II, III.

We have already met a numerical invariant, namely the (minimum) cross-
ing number κ. It is a natural number which takes the value 0 for the trivial
knot represented as an unknotted circle.

Other invariants taking values in Z (relative integers) can be defined for
oriented link diagrams, where each crossing is marked by ±1 according to
some fixed convention. For instance, the writhe w(D(L)) of a diagram D of
an oriented link L is the summation of the signs of the crossings of D, namely

w(D(L)) =
∑
p

εp ≡ w(L) , (3)

where the sum runs over the crossing points {p} and εp = +1 if the (directed)
knot path shows an overpass at the crossing point p, εp = −1 for an under-
pass. Note however that both the crossing number and the writhe do change
under Reidmeister move of type I, but are invariant under the moves II and
III: this property defines a restricted kind of isotopy, referred to as regular
isotopy. The concept of regular isotopy is very useful because, by eliminat-
ing the move I, we do not really lose any information about the topology of
the link. Moreover, the evaluation of crossing numbers and writhes can be
carried out combinatorially by a simple inspection of the diagrams.

Over the years, mathematicians have provided a number of knot invari-
ants, by resorting to topological, combinatorial and algebraic methods.
Nevertheless, we do not have yet a complete invariant (neither a complete
set of invariants) able to characterize the topological type of each knot and
to distinguish among all possible inequivalent knots. As a matter of fact, the
most effective invariants have an algebraic origin, being closely related to the
braid group and its representation theory. It is straightforward to obtain a
knot (link) out of a ‘braid’. The inverse process is governed by Alexander’s
theorem.

Braids from links: Alexander’s theorem. Every knot or
link in R3 or S3 = R3 ∪ {∞} can be presented as a closed braid,
although not in a unique way.
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Actually there exist two basic types of ‘closures’, illustrated below for the
trefoil knot: on the left the so–called platting (which requires always an even
number of strands) and on the right the standard one, where the strands are
tied on one side of the weaving pattern.

Note in passing that the trefoil (the simplest non trivial knot in Knot Tables, denoted

31) is an alternating knot, namely over- and under–crossing are encountered alternatively

when traveling along its strand. There exists only another knot with 3 crossings, the

mirror image of the trefoil, denoted 32: it can be checked that it is not equivalent to 31,

and it was a byproduct of the seminal paper by Jones [1] the possibility of distinguishing

them through different Jones’ polynomials [see Remark 2A].

The Artin braid group Bn, whose elements are (open) braids β, is a finitely
presented group1 on n standard generators {σ1, σ2, . . . , σn−1}, plus the iden-
tity element e, which satisfy the defining relations

σi σj =σj σi (i, j = 1, 2, . . . , n− 1) if |i− j| > 1

σi σi+1 σi =σi+1 σi σi+1 ( i = 1, 2, . . . , n− 2) (4)

1Generators, together with algebraic relations among them, constitute a presentation
of the given (finite or finitely–generated) group. The term ‘presentation’ will be used also
in a topological context, see footnote 2 in the next lecture.
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This group acts naturally on topological sets of n disjoint strands with
fixed endpoints lying on two parallel lines, running downward and labeled
from left to right by convention. Then each generator σi corresponds to
the crossing of two contiguous strands labeled i and (i + 1), respectively; if
σi stands for the crossing of the i–th strand over the (i+ 1)–th one, then σ−1

i

represents the inverse operation with σi σ
−1
i = σ−1

i σi = e.

1 2 3 1 2 3

3 2 1 3 2 1

=

i i+1 i i+1

An element of the braid group can be thought of as a ‘word’, such as for
instance β = σ−1

3 σ2 σ
−1
3 σ2 σ

3
1 σ
−1
2 σ1σ

−2
2 ∈ B4; the length |β| of the word β is

the number of its letters, where by a ‘letter’ we mean one of the generators or
its inverse element. By a slight change of notation, denote by Rij the over–
crossing operation acting on two strands the endpoints of which are labeled
by i and j. Then the second relation in (4) can be rewritten as

R12 R13 R23 = R23 R13 R12 (5)

so that it corresponds to the drawing above where operations are or-
dered downward. Note also that this picture can be viewed as a portion of
an n–strands configuration (and thus {1, 2, 3} may actually represent labels
attached to any triad of contiguous strands) since the first relation in (4)
ensures that other types of crossings cannot happen at all.
The relation (5) is referred to as the algebraic Yang–Baxter relation and (in
suitable forms) it characterizes the structure of solvable models in statistical
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mechanics and many other completely integrable (classical and quantum)
systems.

As mentioned before, it is straightforward to get a link out of a braid: we
have simply to close up the ends of an open braid β to get a closed braid β̂
that reproduces the diagram of some link L. Formally

β
closure−−−−→ β̂ ←→ L . (6)

As shown in the picture above, such an operation can be performed in two
ways, denoted β̂ st (the standard closure) and β̂ pl (the plat closure).

As already pointed out, Alexander’s theorem does not establish a one–
to–one correspondence between links and braids. For instance, given a closed
braid β̂ = L with β ∈ Bn, any other braid obtained from β by conjugation,
namely β′ = αβα−1 (for some α ∈ Bn) has a closure β̂′ which reproduces the
same link L. However, there exists a classical algorithm which performs the
reduction in a number of steps which is bounded from above by a polynomial
function of the braid index, where the braid index of a braid or closed braid
is simply the number of its strands.

For what concerns the issue of knot equivalence, Reidemeister’s theorem
can be rephrased for braids according to Markov’s theorem. The following
statement refers to the case of open braids, which captures the crucial features
of the construction, while the version involving closed braids can be found in
[4], section 2.

Equivalence of braids (Markov moves). Two braids are
equivalent if they differ by a finite sequence of Markov moves of
the following two types, together with their inverse moves:
i) change a braid β ∈ Bn to a conjugate element in the same
group, β → αβα−1, with α ∈ Bn;
ii) change β ∈ Bn to in (β)σ±1

n , where in : Bn → Bn+1 is the
natural inclusion obtained by disregarding the (n + 1)th strand
and σn, σ

−1
n ∈ Bn+1.

Remark 1A. We may ask whether it would be possible to select the most
economical presentation of a knot diagram as a closed braid. The relevant
quantity would be the minimum braid index of a link L, namely the mini-
mum integer n for which there exists a braid β ∈ Bn whose closure β̂ is a
diagram for L. No explicit algorithm for this problem is known, so that its
computational complexity class is presumably (more than) exponential.
Algorithmic questions concerning knot theory, knot invariants and braid
group are addressed in [4]; for applications in the context of quantum com-
puting, see a few papers by the lecturer (arXiv, 2006-2009) and references
therein. �
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2 Topological invariants of knots from repre-

sentations of the braid group in a Hecke

algebra; skein relations and a glimpse of

recursive combinatorial construction

The basic reference for this lecture is again [4].

Invariants of knots (links) of polynomial type arise (or can be reformu-
lated) by resorting to representations of the braid group2.

Generally speaking, in order to represent the finitely presented group Bn

defined in (4), we need an ‘algebra’ structure A, namely a vector space over
some field (or ring) Λ, endowed with a multiplication satisfying associative
and distributive laws. The algebra must have a unit with respect to mul-
tiplication and for our purposes must be also finitely generated, namely its
elements can be decomposed in terms of some finite basis set, the number of
elements of which equals the braid index n.

The reason for considering an algebra should become clear if we recognize,
on the one hand, that we can multiply braids ∈ Bn by simply composing their
diagrams: given β1 and β2 ∈ Bn we get the product β1 β2 by placing the braid
β1 above β2 and gluing the bottom free ends of β1 with the top ends of β2

(this operation was implicitly assumed in (4) and (5), see also the central
portion of the figure below).

2 Here the term presentation belongs to the branch of geometry called ‘geometric topo–
logy’, where the existence of neither a (Riemannian) metric nor a differentiable structure
is required. So far we have encountered the presentation of a knot as a braid and, for
3-manifolds, there exist several types of presentations, e.g. by surgery along links, see
Remark 5A in the final section. On the other hand, a representation is a homomorphism
(linear map) between algebraic structures.
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The operation to be associated with ‘addition’ of braids can be defined
in terms of formal combinations of the type aβ1 + bβ2, for any β1, β2 ∈ Bn

and a, b ∈ Λ (the field of scalars associated with the algebra A).
With these premises, a representation of Bn inside the algebra A is a map

ρA : Bn −→ A (7)

which satisfies

ρA(β1 β2) = ρA(β1)ρA(β2) ∀ β1 , β2 ∈ Bn, (8)

namely ρA is a group homomorphism from Bn to the multiplicative group
G ⊂ A of the invertible elements of A (in particular: ρA(e) = 1, where e is
the identity element of Bn and 1 denotes the unit of A; ρA(β−1) = [ρA(β)]−1,
∀β). By using the standard generators of Bn defined in (4), it suffices to
define the map (7) on the generators {σi}

ρA(σi)
.
= gi ∈ G ⊂ A , (i = 1, 2, . . . n− 1) , (9)

and to extend linearly its action on products and sums of braids. Therefore
any pair of contiguous elements gi and gi+1 must satisfy the Yang–Baxter
equation associated with the representation ρA, namely

gi gi+1 gi = gi+1 gi gi+1 (10)

while gigj = gjgi for |i − j| > 1. To make the algebra A a Hecke algebra it
is necessary to add the requirement

A 7→ Hn (t) with (gi)
2 = (t− 1) gi + t . (11)

Here t is an element of Λ∗ and for t = 1 ∈ Λ∗, Hn (1) is isomorphic to the
group algebra of the symmetric group on n objects, Σn.
[Σn can be generated by {τi}, i = 1, 2, . . . , n− 1, the swaps of pairs of contiguous objects,

with relations: (τi)
2 = 1 , ∀i, 1 being the identity permutation. Thus we can think of Hn (t)

as encoding a ‘deformation’ of the group algebra of the symmetric group: the choices and

the role of such deformation parameter will become clear in what follows.]

For simplicity, we keep on using A and introduce matrix representations
of some fixed dimension N by representing A over the algebra of (N × N)
matrices with entries in the field Λ

A −→ M(Λ , N). (12)

If we restrict the domain of the above map to the group G ⊂ A of invertible el-
ements, the assignment (12) can be rephrased as the choice an N–dimensional
vector space V over Λ, and thus we have the natural isomorphism

M(Λ , N) ∼= GLΛ (V, N), (13)
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where GLΛ (V, N) is the general linear group of non–singular, Λ–linear maps
V → V .

Loosely speaking, if we associate with a braid β ∈ Bn a matrix M(β)
obtained by means of a representation (12) of dimension N = n, then β can
be characterized by a scalar, namely the trace of M(β) (the character of the
representation in a group–theoretic language). Such traces are candidates
to be interpreted as invariants of links presented as closed braids. More
formally, a trace function over the algebra A is defined as a linear function
over A and, by extension, over a matrix representation algebra (12)

A −→ M(Λ , N)
Tr−→ Λ (14)

satisfying the property

Tr (M(β)M ′(β′) ) = Tr (M ′(β′)M(β) ). (15)

for any M(β) ,M ′(β′) which are the images under ρA of two braids β, β′

∈ Bn. Then Tr(M(β)) is a link invariant since it does not change under
Markov move of type i) (defined in lecture 1), namely

Tr (M(β)) = Tr (M ′(β′)) if β and β′ are conjugate. (16)

Link invariants arising as Markov traces of representations of Bn in Hn (t)
are then polynomials in the formal variable t and turn out to be ‘regular’
isotopy invariants (we leave aside the issue of the further invariance under
Markov moves of type ii) which would provide ‘ambient’ isotopy invariants).

The general algebraic setting outlined above underlies the constructions
of both the Jones [6] and HOMFLY [7] link polynomials. In particular:

• the Jones polynomial of a link L, J(L; t), is the Markov trace of the
representation of Bn in the Hecke algebra Hn(t) 3. It is a Laurent
polynomial in one formal variable t with coefficients in Z, namely it
takes values in the ring Λ ≡ Z[t, t−1];

• the HOMFLY polynomial P (L; t, z) is obtained as a one–parameter
family of Markov traces (parametrized by a further z ∈ Λ∗) of the
representation of Bn inside the Hecke algebra Hn(t). It is a Laurent
polynomial in two formal variables with coefficients in Z, namely it
takes values in Λ ≡ Z[t±1, z±1].

3 The original definition in [1] was formulated in terms of the Temperley–Lieb algebra
TLn(t), sometimes referred to as Jones’ algebra. However, it can be shown that the
irreducible representations of this algebra are in 1–1 correspondence with those of the
Hecke algebra of the same dimension n, see [4] section 4.3.
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Remark 2A:
skein relations and recursive combinatorial constructions

As pointed out by Jones himself [8], the simplest way of calculating poly-
nomials of knots, at least for low crossing numbers, is by means of linear
skein relations, which are at the basis of the combinatorial constructions in-
troduced by Conway in the early 1960s and fully developed by Kauffman
(the ‘bracket’ method) [9]. We give here a very brief account on this, refer-
ring to oriented diagrams. According to the standard notation, we denote
by the symbol L a general diagram (of a knot or link), and by L+, L0, L−
respectively the local configurations which may occur within L:

The basic skein relation is given by the three–term linear recursion formula

a J(L+) + a′ J(L−) = d J(L0) (17)

where J denotes the polynomial in question and a, a′ , d are non–null scalars ∈
Λ∗. In most cases a′ = (a)−1 and they are related to the (single) variable of the
polynomial (d is a suitable combination of powers of the other parameters).
The skein relation, together with the choice of a normalization for the unknot
(the circle) L© ,

J (L©) = b ∈ Λ∗ (18)

can be shown to provide, through a recursive procedure of ‘disentanglement’
of the diagram, the expression of the polynomial J (L), invariant under am-
bient isotopy (Reidemeister moves, see lecture 1)4.

�

4Note that in this combinatorial construction the skein relation plays the role of ‘defi–
ning relation’ for the invariant, leaving somehow aside the issue of representations of the
braid group in some (Hecke or other types of) algebras. However, these approaches are
not really independent, and we will come back on this later on, in connection with the
TQFT definition of the knot invariants in lecture 4.
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Remark 2B:
the Jones polynomial for the trefoil knots

The skein relation for the Jones polynomial reads (we keep on using J
although the symbol used by Jones is V (L; t))

1

t
J(L+) − t J(L−) = (

√
t + 1√

t
) J(L0) (19)

with the normalization

J (L©) = 1 (20)

so that it can be considered as a Laurent polynomial in the formal variable√
t (the ring of such polynomials can be still denoted Λ ≡ Z[t, t−1] as done

in the definition trough the Hecke algebra).
As an illustrative example, below we show the standard, right–handed

trefoil knot 31 (left) and its mirror, left–handed image 32 (right).

The knots have to be thought of as oriented in order to apply the proce-
dure of Remark 2A, although it can be shown that the value of the Jones’
invariant is the same if we reverse the orientation of the strand of (any) knot.
The trefoil is a chiral knot, as already mentioned, and the Jones’ polynomial is
capable of distinguishing the two configurations, unlike all previously known
invariants. Indeed

J (31 ) = t + t3 − t4 (21)

J (32 ) = t−1 + t−3 − t−4 (22)

See “http://en.wikipedia.org/wiki/Skeinrelation” for explicit examples of
calculations on a few knot diagrams. �
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3 Algebraic construction of colored Jones’

polynomials in the SU(2)q framework;

universality

The basic reference for this lecture would be the paper by Reshetikhin and
Turaev [10] which, together with Witten’s [2], represent the pillars of the
whole subject. However, the treatment of Kirby and Melville [11] turns out
to be more simple and self–contained, and will be followed in this lecture.

The general algebraic approach of lecture 2 leaves aside the crucial quest
of unitarity for representations of the braid group Bn employed in evaluat-
ing link invariants. This is of course an input of physical nature, based on
the fact that a number of ‘quantum’ (many–body) systems and field theories
do support unitary representations of the braid group. The resulting ‘quan-
tum’ invariants5 have been extensively studied since the 1990s and are of
continuous interest for both geometers and theoretical physicists (see more
comments in the final section).

Universality. These invariants arise from a number of histori-
cally distinct approaches, ranging from R–matrix representations
obtained with the quantum group method (addressed here), mon-
odromy representations of the braid group in 2D conformal field
theories and the quasi–tensor category approach by Drinfel’d up
to 3D quantum Chern–Simons theory (see the next lecture). All
these frames share the common feature of being ‘integrable’ or
‘solvable’, a property reflected by the presence of Yang–Baxter–
like equations encoding the algebraic structure of braid groups
in disguise. Basically, the inherent representations are unitarily
equivalent to each other.

Note preliminarly that, since we are looking for unitary representations
to be associated with link invariants, the formal variable of the polynomials
(including in particular the Jones polynomial) has to be a unitary complex
number c ∈ C, with |c| = 1. The commonly adopted variable is a complex,
r–th root of unity, namely

q := exp(2π i/r) , r ∈ N, r ≥ 1 (23)

5 ‘Quantum’ has a double, interconnected meaning: it accounts for (Topological)
‘Quantum’ Field Theory (see lecture 4) and also for the presence of a ‘quantum’ group
symmetry, which might be looked at as related to regularization of the quantized theory.
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and the idea is that, by letting r grow, the polynomial can be evaluated in
more and more points lying on the unit circle in C. The upgraded notation
for the Jones polynomial is

J (L; q) ∈ Z[q, q−1]. (24)

The invariant of an oriented link L we are going to address is an extension
of the Jones polynomial (24), denoted by

J (L; q; j1, j2, . . . , jM) (25)

and parametrized by a set of labels {j1, j2, . . . , jM} (the ‘colors’) to be as-
signed to each of the M link components {Li}i=1,2,...,M . From the point of
view of equivalence of links, J (L; q; j1, j2, . . . , jM) turns out to be a ‘regular
isotopy’ invariant, but it can be shown that the quantity

q−3w(L)/4

q1/2 − q−1/2
J(L; q; j1, j2, . . . , jM), (26)

where w(L) is the writhe of the link L defined in (3) of lecture 1, is invariant
under any ambient isotopy transformation.
The colored polynomials (26) reduce to Jones’ (24) when all the colors j1, j2,
. . . , jM are equal to a same j, with j = 1/2, but they are genuine generaliza-
tions as far as they can distinguish knots with the same Jones polynomial.

The basic objects in the definition of the invariants (25) are oriented,
colored links and braids. Recall that a link is oriented if all its components
{Li}i=1,2,...,M are endowed with an orientation. Since L can be thought of as

the closure β̂ of an open braid β ∈ Bn for some n (Alexander’s theorem of
lecture 1), each strand of β (β̂) inherits naturally an orientation, depicted
in figures by an arrow. The assignment of ‘colorings’ can be carried out in
two different ways, namely by assigning a color either to each oriented link
component Lm (m = 1, 2, . . . ,M) or to each strand li (i = 1, 2, . . . , n) of
the associated oriented braid β ∈ Bn. Of course the braid index n is in
general (much) greater than the number of link components M , as can be
easily recognized from the drawing at page 9 (the Borromean link with 3
components presented as a 6-strands braid). Here we are going to illustrate
the first choice6 which is technically simpler and emphasize the role of the
so–called R–matrix, namely the set of representations of the crossings in link
diagrams, as ‘braiding operators’ over the representation ring of SU(2)q [11].

6Both choices of the colorings provide actually the same colored link invariants, possibly
up to an overall normalization factor.
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The representation ring of SU(2)q, denoted R (SU(2) q), can be intro-
duced following in the footsteps of the construction of SU(2)–representation
theory. According to our previous notation, the ground ring (in which the
link invariants will take their values) is Λ = Z [q±1] ⊂ C, with q = exp(2πi/r)
as in (23). The elements of R (SU(2)q) are complex Hilbert spaces, invariant
under the action of the group (recall that a vector space V is invariant under
the action of a group G if G × V → V , namely transformed vectors keep
on belonging to V ; such spaces are referred to as invariant G–modules). As
happens for SU(2), it can be shown that R (SU(2)q), is spanned by finite–
dimensional SU(2)q–modules {V j}. In the case of SU(2) the labels {j} (the
spin quantum numbers from the quantum mechanical point of view) run over
all integers and half–integers {0, 1

2
, 1, 3

2
, . . .}, each V j is characterized by its

dimension (2j + 1) and is irreducible (namely cannot be decomposed into a
direct sum of invariant subspaces of lower dimensions).

In the q–deformed case it can be shown that the SU(2)q–modules {V j} are
irreducible if and only if the labels {j} run over the finite set {0, 1

2
, 1, 3

2
, . . . , r}.

Each V j, spanned by (2j + 1) vectors, can be characterized by a scalar ∈ Λ,
the q–integer [2j + 1]q, where [n]q = (qn/2− q−n/2)/(q1/2− q1/2) for n ∈ N+ a
positive integer. Thus, for each choice of the integer r, we have a distingushed
family of irreducible representations (irreps) of SU(2)q

Fr = {V j }j=0,...,r ; V j ↔ [2j + 1]q (the q-dimension) (27)

which makes R (SU(2)q) a finitely generated ring. As in the case of SU(2),
the ring structure is made explicit in terms of the direct sum ⊕ and (non
commutative and non associative) tensor product ⊗ of irreps

V j ⊕ V k ∈ R (SU(2)q) if j, k ≤ r

V j ⊗ V k ∈ R (SU(2)q) if j + k ≤ r, (28)

where the ranges of the labels have to be suitably restricted with respect to
the standard case. The analogue of the Clebsch–Gordan series, giving the
decomposition of the tensor product of two irreps into a (truncated) direct
sum of irreps, reads

V j1 ⊗ V j2 =

min{j1+j2,r−j1−j2}⊕
j=|j1−j2|

V j. (29)

Note however that the ring R(SU(2)q) is much richer than its ‘clas-
sical’ SU(2)–counterpart because SU(2)q can be endowed with a quasi–
triangular Hopf algebra structure. This means that, besides the standard
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operators ⊕ and ⊗ (which obey distributive laws) we can also introduce
a co–multiplication ∆ : SU(2)q → SU(2)q ⊗ SU(2)q, an antipode map
A : SU(2)q → SU(2)q, a counit ε : SU(2)q → C and a distinguished in-
vertible element

R ∈ SU(2)q ⊗ SU(2)q, (30)

called the R–matrix 7. The far–reaching role played by the R–matrix be-
comes manifest when we define its action on the tensor product of a pair
of irreducible SU(2)q–modules in R(SU(2) q). Denoting by R̂ the operator
associated to R, we have

R̂ : V j ⊗ V k −→ V k ⊗ V j, (31)

where, according to (28) the values of the labels j, k have to be suitably
restricted. These R̂–operators will be referred to as braiding operators asso-
ciated with the R–matrix (30). If we further extend the action of R̂ to the
ordered product of three irreps V j ⊗ V k ⊗ V l by defining

R̂jk
.
= R̂⊗ Id : (V j ⊗ V k) ⊗ V l −→ (V k ⊗ V j) ⊗ V l

R̂kl
.
= Id⊗ R̂ : V j ⊗ (V k ⊗ V l) −→ V j ⊗ (V l ⊗ V k) , (32)

where Id is the identity operator on the corresponding factor, then it can be
shown that these operators satisfy the quantum Yang–Baxter equation

R̂jk R̂kl R̂jk = R̂kl R̂jk R̂kl . (33)

The adjective ‘quantum’ refers here to the underlying quantum group setting,
and it easily recognized that (33) maps to (5), the algebraic Yang–Baxter
relation, if we perform the substitutions

ordered triple (j k l) 7−→ ordered triple (1 2 3)

R̂ (braiding operator) 7−→ R (crossing) .
(34)

The explicit expression of the braiding operator R̂ (and of its inverse
R̂−1) can be worked out explicitly by selecting orthonormal basis sets in the
SU(2)q –modules V j, V k, for each admissible choice of the pair j, k. For (all
choices of) such bases, the braiding operators (31) and (32) are unitary.

Having collected all the necessary algebraic ingredients, the colored invari-
ant (25) for an oriented link L with M components can be now consistently
interpreted in terms of a Λ–linear map

J (L; q; j1, j2, . . . , jM) : R (SU(2)q) −→ Λ , (35)

7We do not insist any further on the explicit definitions of ∆, A and ε, refer to [11]
(section 1) for more details.
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where the choice of the integer r in the root of unity (23) is constrained by
the requirement r ≥M , at least in the most general case (M distinct colors).

Remark 3A:
evaluation of J (L; q; j1, . . . , jM) (more details in [12], appendix A)

2

1

j k l

k j l

In the plat presentation of the oriented, colored Borromean link as a closed
braid on six strands depicted above, the parallel straight lines 1 (≡ λ1) and
2 (≡ λ2) intersect the diagram in points to be associated with Hilbert spaces
which inherit the ‘coloring’ from the corresponding strands. The prescription
for working out J (L; q; j1, j2, . . . , jM) can be summarized as follows.

• Present the link L = ∪Li (i = 1, 2, . . . ,M) as the plat closure of a
braid and choose an orientation for each component (depicted by an
arrow). Assign to each component a (distinct) color

Li −→ ji (i = 1, 2, . . . ,M) . (36)

• Insert two parallel horizontal lines λ1, λ2 cutting the ‘cap’ and ‘cup’
portions of the diagram, respectively. This choice provide the diagram
with an overall, downward orientation.
The region of the diagram lying between λ1 and λ2 is an open braid
whose strands inherit suitable labels from the colorings (36).

• Assign to the intersection point between a line (λ1 or λ2) and the string
labeled by j the SU(2)q irreducible module V j belonging to the distin-
guished family defined in (27).
The whole configurations of intersection points on λ1 and λ2, each or-
dered from left to right, are to be associated with the SU(2)q –modules
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Vλ1 and Vλ2 , respectively, each being associated with the ordered ten-
sor product of the individual irreps. For the 3–components Borromean
link depicted above we get in particular

Vλ1 = V j ⊗ V j ⊗ V k ⊗ V k ⊗ V l ⊗ V l

Vλ2 = V k ⊗ V k ⊗ V j ⊗ V j ⊗ V l ⊗ V l . (37)

Note that Vλ1 and Vλ2 have the same dimension as Hilbert spaces over
C, given by the product of the dimensions of the individual factors.
The number of such factors, say 2N , is the same for the two spaces and
equals the number of strands of the braid, or even the number of ‘caps’
(‘cups’) lying above the line λ1 (below λ2) divided by two. This feature
derives of course from the topological presentation we adopted for the
link L, since the braid obtained from the plat closure of any link has
an even number of strands.

• Going on with the example, in the representation ring R(SU(2)q ) there

exists a well defined, unitary operator B̂(L; q; j, k, l) to be associated
with the transformation relating Vλ1 and Vλ2 in the diagram of the
Borromean link L above

B̂(L; q; j, k, l) : Vλ1 −→ Vλ2 , (38)

where Vλ1 and Vλ2 are explicitly defined in (37). The composite braid-
ing operator B̂(L; q; j, k, l) can be decomposed into an ordered sequence
of the ‘elementary’ unitary braiding operators R̂ (and their inverses) in-
troduced in (31), suitably tensorized with identities. The sequence is
uniquely determined by going trough the diagram from λ1 to λ2.

• In the case of the Borromean link, the matrix elements of the braiding
operator (38) evaluated on (the tensor product of) orthonormal basis
vectors of the spaces V j,V k, V l can be collected into a unitary (2J +
1)× (2J + 1) matrix parametrized by the colors j, k, l, namely

Bαβ (j, k, l) ∈ U(Λ, 2J + 1) (α, β = 1, 2, . . . , 2J + 1), (39)

where U(Λ, 2J + 1) is the algebra of unitary matrices on the ground
ring Λ ≡ Z[q, q−1] and (2J + 1) = (2j + 1)(2k + 1)(2l + 1).
Finally, the colored link invariant J(L; q; j, k, l) is obtained by taking
the trace of the matrix (39), formally

J(L; q; j, k, l) = (TrBαβ) (j, k, l), (40)

where the resulting quantity turns out to contain the colors through
the ‘quantum weights’ [2j + 1]q, [2k + 1]q, [2l + 1]q . �
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4 Holonomy in non–Abelian Chern–Simons

TQFT and v.e.v. of Wilson operators;

3-manifolds and links invariants; a glimpse

to other Schwarz–type TQFT

There are a number of references on this topic where either the mathematical
or the field theoretic frameworks are under focus. We adopt here the latter
viewpoint (closer to the original Witten’s paper [2]), included in the book by
Guadagnini [13] which collects also results published in papers co–authored
by Martellini and Mintchev.

The axiomatic approach to TQFT due to Atiyah [14] is briefly reviewed
in Remark 4A (and can be skipped by readers familiar with it).

A topological quantum field theory (TQFT) is a particular type of gauge
theory, namely a theory quantized through the (Euclidean) path integral
prescription starting from a classical Yang–Mills action defined on a suitable
D–dimensional space(time). TQFT are characterized by observables (corre-
lation functions, or vacuum expectation values, v.e.v.) which depend only
on the global features of the space on which these theories live, namely they
are independent of any metric which may be used to define the action of the
classical theory. The geometric generating functionals and correlation func-
tions of such theories are computable by standard techniques in quantum
field theory and provide novel representations of certain global invariants
for both D-manifolds and particular submanifolds embedded in the ambient
space, such as collections of knotted curves (links). Let us recall in brief the
basic axioms for a unitary TQFT in D = 3 before going through the case
which is of interest here, namely SU(2) Chern–Simons theory.

Remark 4A: axiomatic TQFT

Denote by Σ1 and Σ2 a pair of 2–dimensional manifolds and by M3 a
3–dimensional manifold with boundary ∂M3 = Σ1 ∪ Σ2 (all manifolds here
are compact, smooth and oriented). A unitary 3–dimensional quantum field
theory corresponds to the assignment of
i) finite dimensional Hilbert spaces (endowed with non–degenerate bilinear
forms) HΣ1 and HΣ2 to Σ1 and Σ2, respectively;
ii) a map (technically, a functor) connecting such Hilbert spaces

HΣ1

Z [M3 ]−−−−→ HΣ2 (41)

whereM3 is a manifold which interpolates between Σ1 (incoming boundary)
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and Σ2 (outgoing boundary).
Without entering into details concerning a few more axioms (diffeomorphism
invariance, factorization etc.) we just recall that unitarity implies that
iii) if Σ̄ denotes the surface Σ with the opposite orientation, then HΣ̄ = H∗Σ,
where ∗ stands for complex conjugation;
iv) the mappings (41) are unitary and Z[M̄3] = Z∗[M3], where M̄3 denote
the manifold with the opposite orientation with respect to M3.

�

The classical SU(2) Chern–Simons action for the sphere S3 (which is the
simplest compact, oriented 3–manifold without boundary) is given by

S(A) =
1

4π

∫
S3

tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
(42)

where A is the connection 1–form with value in the Lie algebra su(2) of the
gauge group, d is the exterior differential, ∧ is the wedge product of differ-
ential forms and the trace is taken over Lie algebra indices. The partition
function of the quantum theory corresponds to the map (41) restricted to
the case of empty boundaries and is obtained as a ‘path integral’, namely by
integrating the exponential of i times the classical action (42) over the space
of gauge–invariant flat SU(2) connections (the field variables) according to
the formal expression

ZCS [S3; k] =

∫
[DA] exp

{
i k

4π
SCS (A)

}
(43)

where the coupling constant k is constrained to be a positive integer by the
gauge–invariant quantization procedure and is related to the deformation
parameter q (see below). The generating functional (43), written for a generic
closed oriented 3–manifoldM3 is, for each fixed value of k, a global invariant,
namely depends only on the overall topological type 8 .

Observables in the quantum theory are requested to be both gauge–
invariant and invariant under diffeomorphisms (here ambient isotopies). They
are expressed as (vacuum) expectation values of Wilson line operators asso-
ciated with oriented knots (links) embedded in the 3–manifold, commonly

8 The extension of (43) to the case of a manifold with boundaries, ∂M3 6= ∅, requires
modifications of the classical action (42) by suitable Wess–Zumino–Witten type terms to
be associated with each boundary component. However, we do not need here the explicit
expression of such boundary action since what we are interested in are expectation values
of observables in the quantized field theory which require just the knowledge of (basis
vectors belonging to) the boundary Hilbert spaces, cfr. i) above and Remark 4B below.

21



referred to as Wilson loop operators. Knots and link are ‘colored’ with irreps
of the gauge group SU(2), restricted to values ranging over {0, 1/2, 1, 3/2,
. . . , k − 2}, where the integer k ≥ 3 is related here to the deformation
parameter by

q = exp(2iπ/k) . (44)

The Wilson loop operator associated with a knot K carrying a spin–j
irrep is defined as (the trace of) the holonomy of the connection 1–form A
evaluated along the closed loop K ⊂ S3, namely

Wj [K] = trj P exp

∮
K

A, (45)

where P is the path ordering.
For a link L made of a collection of M knots {Km}, each labeled by an

irrep, the expression of the composite Wilson operator reads

Wj1j2...jM [L] =
M∏
m=1

Wjm [Km]. (46)

In the framework of the path integral quantization procedure, vacuum expec-
tation values of (all) observables are defined as functional averaging weighed
with the exponential of the classical action. In particular, the v.e.v. of the
Wilson operator (46) is

Ej1...jM [L] =

∫
[DA] Wj1...jM [L] e

i k
4π
SCS (A)∫

[DA] e
ik
4π
SCS (A)

, (47)

where SCS (A) is the CS action for the 3–sphere given in (42) and the gener-
ating functional in the denominator will be normalized to 1 in what follows.

These Laurent polynomials (in the variable q) are actually invariants of
‘regular’ isotopy. Their connection with the colored Jones polynomials intro-
duced in (26) of lecture 3 is

J (L; q; j1, j2, . . . , jM) = Ej1...jM [L] , (48)

once suitable normalizations for the unknots have been chosen.
Note finally that E [L] = E [L̄], where L̄ is obtained from L by reversing its
orientation.
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NB: again on universality of link invariants

Once given for granted the equivalence (48) (Witten’s result in [2], proved
in the quantum group approach by Reshetikhin and Turaev [10]) we may
wonder how the explicit evaluation of (47) goes on in practice (see 4A below).

As a general remark, it can be pointed out that an ab initio, field the-
oretic strategy would consist in proving that Wilson operators such as (45)
and (46) do comply with the skein relations typical of the required type of
link invariants, cfr. Remark 2A for the Jones polynomial. The detailed proof
can be found in the papers by Guadagnini, Martellini and Mintchev, pub-
lished in the early 1990s and reviewed at length in the book [13].
The message we get from these results, together with those found in the 1995
paper by Cattaneo et al. [15] (see also [16]) are summarized as follows.
a) All polynomial invariants of oriented links (Alexander, colored Jones,
HOMFLY) can be derived as v.e.v. of Wilson loops within a suitable Schwarz–
type TQFT environment. Note that orientation is a quite natural require-
ment since we can imagine braid strands as trajectories of (quasi)particles
once a suitable (2+1)D decomposition of the ambient 3-manifold is per-
formed. The invariance is under regular isotopy (a fact which rules out
Reidemeister move I), consistently with a field theoretic frame where self–
intersections of trajectories are not allowed (see footnote 11).
b) Schwarz–type TQFT in D=3 are Chern–Simons (CS), with or without a
cosmological constant term, and BF (a double CS, see e.g. [15]). In particu-
lar, colored Jones polynomials are the natural quantum observables in both
CS and BF. N

Remark 4B: colored Jones polynomials in the quantum CS frame

The evaluation of (47) relies on the extension of CS quantum theory –
endowed with a Wess–Zumino–Witten conformal field theory on its boundary–
to the case in which the boundary components are intersected by knots or
links, namely become 2–manifolds with punctures. The basic geometric in-
gredients can be easily visualized in the picture below, where a portion of
a 3D manifold M3 (technically, a handlebody decomposition) is shown, to-
gether with an incoming boundary Σ1 and an outgoing boundary Σ2 made
of two disjoint components, Σ

′
2 and Σ

′′
2 . A portion of some knot (link) em-

bedded in the ambient 3–manifold is also depicted, and its intersections with
the boundaries are ‘punctures’ which inherit the irreps labels from the asso-
ciated (Wilson) lines. According to the axioms of TQFT, we may associate
with each boundary a (finite–dimensional) Hilbert space, that is HΣ1 for the
incoming boundary and HΣ2

.
= HΣ

′
2
⊗ HΣ

′′
2

(here, for simplicity, we do not

explicitate the labels of punctures). The Chern–Simons(–Witten) unitary
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functor (see axiom ii)) is then a state in the tensor product of these Hilbert
spaces or, more precisely,

ZCS [M3 ; k] : HΣ1 → HΣ2

⇒ ZCS [M3 ; k] ∈ HΣ1 ⊗H∗Σ2
, (49)

where in the last row we have used also axiom iii) since the incoming and
outgoing boundaries must be endowed with opposite orientations. Moreover,
such type of expression is compatible with the quantum group approach
of lecture 3 because the Chern–Simons mapping in (49), once restricted
to punctures, induces automatically unitary representations of the braid group
in the tensor algebra of SU(2)q at a root of unity. Finally, it can be shown
[14] that the conformal blocks of the SU(2)` Wess–Zumino field theory living
on the boundaries with punctures actually provide the basis vectors for the
Hilbert spaces introduced above (the level ` of the WZ model is related to
the deformation parameter q by q = exp{2πi/(`+ 2)}, and then ` is related
to the coupling constant k(≥ 3) of the CS theory in the bulk by ` = k − 2).

The explicit evaluation of (47) can be done by resorting, e.g., to the
setting given by Kaul in [16] which relies on the plat presentation of a braid
whose closure is the given link L, as discussed in lecture 1. Details are
omitted here and the reader may refer to [12], section 6 and appendix, for a
self–contained account. �
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5 Quantum Invariants: essential bibliography

and a brief review

The term ‘quantum topology’ was introduced by Turaev in the early 1990s to
denote implications on the topological side of the algebraic theory of quantum
groups –technically, deformations of the universal enveloping algebras of Lie
groups. The latter, based on the pioneering work by Drinfel’d and Jimbo

• Drinfel’d 1987 Quantum Groups (Berlin–New York: W de Gruyter)
• Jimbo M 1985 A q-difference analogue of U(g) and the Yang–Baxter
equation, Lett. Math. Phys. 10 63,

was inspired by theoretical physics from its very beginning since quantum
groups and associated R–matrix representations were the basic tools of quan-
tum inverse scattering methods and the backbone of exactly solvable models
in statistical mechanics, as was soon recognized

• Wu F Y 1992 Knot theory and statistical mechanics, Rev. Mod.
Phys. 60 1099.
• See Martin Loebl’s papers and book on this topic.

The first paper in which quantum invariants of links were addressed in the
context of quantum groups is

•Kirillov A N and Reshetikhin N Y 1989 Representation of the algebra
Uq(sl(2)), q-orthogonal polynomials and invariants of links, in Infinite
dimensional Lie algebras and groups, Adv. Ser. Math. Phys. 17 285.

The Reshetikhin and Turaev paper [10], on which lecture 3 is based, was
published two years later. Quite readable accounts on the subject are

• Lickorish W 1997 An Introduction to Knot Theory (New York:
Springer–Verlag)
• Prasolov V V and Sossinsky A B 1997 Knots, links, braids and 3-
manifolds (Providence, RI: American Mathematical Society)

while an exhaustive collection of results, references and open problems is

• Ohtsuki T ed 2004 Problems on invariants of knots and 3–manifolds,
RIMS Geometry and Topology Monographs Vol. 4,
arXiv:math.GT/0406190.

The deformation parameter q was originally assumed to be a real num-
ber related to Planck constant by q = eh, therefore it is commonly referred
to as a ‘quantum’ deformation, while the ‘classical’, undeformed Lie group
symmetry is recovered at the particular value q = 1 (h → 0). As discussed
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in lectures 3 and 4, in dealing with quantum invariants of knots (and 3–
manifolds, see below) q is most often a complex root of unity, the case q = 1
being considered as the ‘trivial’ one. However, in a topologist’s language,
‘classical’ topological invariants are not the (q = 1)–counterparts of ‘quan-
tum’ invariants, but rather the usual invariants of algebraic and geometric
topology, typically related to the fundamental group and homology groups
of manifolds and submanifolds. The standard topological invariants were
created in order to distinguish between things and, thanks to their intrinsic
definitions, it is clear what kind of properties they reflect 9. On the other
hand, quantum invariants of knots and 3–manifolds were discovered, but
their indirect construction based on quantum group technology often hides
information about the purely topological properties they are able to detect.
Indeed, recognizing quantum invariants as partition functions and vacuum
expectation values of physical observables in Chern–Simons–Witten (CSW)
TQFT provides a ‘physical’ explanation of their existence and properties.
Even more radically, one could speak of a ‘conceptual’ explanation, as far as
the topological origin of these quantum invariants keeps on being unknown10.

The CSW environment provides not only the physical interpretation of
quantum invariants but it can be looked at as the prototype of all historically
distinct definitions (see the remarks on universality in lectures 3 and 4).
In particular, monodromy representations of the braid group appear in a
variety of conformal field theories since point–like ‘particles’ confined in 2–
dimensional regions evolve along braided world–lines.

• Kohno T 1987 Monodromy representations of braid groups and
Yang–Baxter equation Ann. Inst. Fourier 37 139
• Gomez C, Ruiz–Altaba M and Sierra G 1996 Quantum group in two–
dimensional physics (Cambridge University Press) (and references therein)

As a matter of fact, the natural extension of CSW theory to a (globally
hyperbolic) 3–manifold M3 endowed with a non empty 2D boundary ∂M3

induces on ∂M3 a specific quantized boundary conformal field theory, namely
the SU(2) Wess–Zumino–Witten theory at level k+ 2, as already mentioned
in lecture 4. Such extensions are strictly related to low–dimensional gravity
models (not addressed in these lectures), see

• Witten E 1988/89 (2+1)-dimensional gravity as an exactly soluble
system, Nucl. Phys. B 311 46

9For instance, the Euler number χ of a smooth, closed and oriented surface S determines
completely its topological type (recall that it is defined as χ(S) = 2 − 2g, g being the
number of ‘handles’ of S).

10At this point we should have realized that the adjective ‘quantum’ includes both q-
deformation of the Lie group symmetry and quantum field–theoretic frame.
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• Carlip S 1998 Quantum Gravity in 2+1 dimensions (Cambridge
University Press) (and references therein).

Remark 5A: quantum invariants of 3-manifolds presented
by surgery along a link

The quantum invariants of 3–manifolds we are going to discuss in brief
can be obtained as linear combinations of (colored) polynomial invariants of
‘framed’ unoriented links in the 3–sphere S3 on the basis of the fact that
every closed, connected and orientable 3–manifold M3 can be obtained by
surgery on an unoriented framed link in the 3–sphere, (cf. the book by
Lickorish (who proved this theorem), the book by Prasolov and Sossinsky and
[11]). Loosely speaking, a framed oriented link [L; f ] is obtained from L by
thickening its strings to get oriented ‘ribbons’. If L has M knot components
K1, K2, . . . , KM , for each Ki we introduce another closed path Kf

i oriented
in the same way as Ki and lying within an infinitesimal neighborhood of
Ki

11. Such a presentation of the 3-manifold, denoted M3
L or S3 \ L in the

following, is based on ‘surgery’ operations performed on the solid torus that
can be associated with the link (the equivalence relations among surgery
instructions yielding a same 3–manifold are topological operations on framed
link diagrams known as Kirby moves). In case of an SU(2)q–colored surgery
link (operating in practice with a suitably chosen presentation of the link as
a colored closed braid, as well as with a specific representation of braiding
operators) it can be shown that the quantity

I [M3
L ; f ; q] = α−σ[L; f ]

∑
{j}

µj1 µj2 · · ·µjS J [L; f , j ; q] (50)

is, for each q, a topological invariant of the 3–manifoldM3
Lendowed with the

framing assignment f (the undefined quantities are combinatorial ‘weights’
related to q-integers). Each J [L; f , j ; q] is the ‘unoriented’ counterpart of
the polynomial for the link L with coloring assignment j on its components
and the summation is performed over all admissible colorings 12.
Thus colored Jones polynomials can be thought of, on the one side, as asso-
ciated to CSW quantum observables given by knotted oriented trajectories
on a given background manifold M3, and as basic bricks for all quantum
invariants, on the other.

11 It is worth noting that in the CSW environment it would have been necessary to
introduce framings on knots and links, a requirement physically motivated by the general–
covariant quantization procedure (see e.g. [13]).

12Unlike what happens here, where unknots should be suitably normalized, the choice
of normalization for Wilson loop operators in (47) of lecture 4 was ZCS [S3; k] =1.
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A detailed self–contained account on 3-manifold invariants with notations co-
herent with the rest of these lectures can be found in

• Garnerone S, Marzuoli A and Rasetti M 2009 Efficient quantum pro-
cessing of three–manifold topological invariants, Adv. Theor. Math.
Phys. 13 1 (arXiv:quant-ph/0703037). �

Remark 5B: perturbative invariants and the volume conjecture

In the CSW setting, ‘perturbative’ invariants emerge as coefficients of the
asymptotic expansion of the partition function ZCS(M3

L; k) as k → ∞ (see
the review edited by Ohtsuki), or, in more physical terms, when the natural
cut–off of the underlying QFT is removed. Besides a lowest order contribu-
tion that corresponds to the semiclassical (saddle point) approximation of
Z(M3

L; k), each other contributions in the expansion is exp{2π iSCS(Â)/k}
times a power series in 1/k (SCS(Â) is the CS action evaluated for the flat
connection Â). Perturbative invariants are the coefficients of the powers
(1/k)n evaluated by using (n+ 1)–loop Feynman diagrams. Although CSW
is a perturbatively renormalizable quantum theory [13], the meaning of such
invariants in geometric topology is only conjectured in a few cases.

In this respect, the so–called ‘volume conjecture’ concerns special classes
of hyperbolic 3–manifolds obtained by ‘surgery’ along framed links in the
3–sphere and endowed with hyperbolic metrics. Focusing in particular on
‘hyperbolic knots’, namely those knots which give rise to finite–volume hy-
perbolic 3–manifolds, the volume conjecture stated in

• Murakami H and Murakami J 2001 The colored Jones polynomials
and the simplicial volume of a knot, Acta Math. 186 85

can be cast in the form

2π lim
N→∞

log |JN(K)|
N

= Vol (S3 \K) , (51)

where K is the surgery hyperbolic knot and the notation JN(K) stands for
the N–colored polynomial of K evaluated at q = exp(2πi/N).

�

The continuing interest about quantum invariants of links and 3-manifolds
in field–theoretic settings even more general than 3D quantum CSW is wit-
nessed, e.g., by the recent paper

•Witten E 2014 Two lectures on the Jones polynomial and Khovarov
homology, arXiv:1401.6996[math.GT].
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